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Abstract

Multimodal recommendation systems can learn users’ pref-
erences from existing user-item interactions as well as the
semantics of multimodal data associated with items. Many
existing methods model this through a multimodal user-item
graph, approaching multimodal recommendation as a graph
learning task. Graph Neural Networks (GNNs) have shown
promising performance in this domain. Prior research has
capitalized on GNNs’ capability to capture neighborhood in-
formation within certain receptive fields (typically denoted
by the number of hops, K) to enrich user and item semantics.
We observe that the optimal receptive fields for GNNs can
vary across different modalities. In this paper, we propose
GNNs with Modality-Independent Receptive Fields, which
employ separate GNNs with independent receptive fields for
different modalities to enhance performance. Our results in-
dicate that the optimal K for certain modalities on specific
datasets can be as low as 1 or 2, which may restrict the
GNNs’ capacity to capture global information. To address
this, we introduce a Sampling-based Global Transformer,
which utilizes uniform global sampling to effectively inte-
grate global information for GNNs. We conduct comprehen-
sive experiments that demonstrate the superiority of our ap-
proach over existing methods. Our code is publicly available
at https://github.com/CrawlScript/MIG-GT.

Introduction
Recommendation systems predict user preferences by an-
alyzing historical user-item interactions. Recently, deep
learning has advanced the development of multimodal rec-
ommendation systems, which integrate rich multimodal data
like texts and images alongside user-item interactions. Many
existing studies (Zhou and Miao 2024; Sun et al. 2024)
demonstrate that this utilization enables a richer, more com-
prehensive understanding of items, thereby enhancing the
performance of recommendations. Multimodal recommen-
dation systems have been widely used in applications such
as e-commerce and micro-video platforms (Liu et al. 2023a;
Shang et al. 2023; Cai et al. 2022; Liu et al. 2024).

In recent years, GNN-based vertex representation
learning has emerged as a powerful technique in multi-
media recommendation systems (Zhou et al. 2023a; Wu
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Figure 1: Performance of GNNs on Amazon Baby with fea-
tures of different modalities at varying receptive fields (num-
ber of hops, K). “Emb” stands for learnable embeddings.
The optimal K is modality-dependent: Emb and Text per-
form best at K = 3, while Visual performs best at K = 2.

et al. 2023b; Gao et al. 2023; Zhou et al. 2023b). These ap-
proaches use a graph to model the system, typically with
graph vertices representing users and items, vertex features
encapsulating multimodal data, and graph edges denoting
user-item interactions. Building on this, recommendation is
treated as a task of vertex representation learning. By em-
ploying GNNs for this purpose, the method effectively uti-
lizes high-order interactions and multimodal data to derive
low-dimensional embeddings of users and items. These em-
beddings are then used to compute similarities that reflect
user preferences towards specific items, thereby enhancing
the performance of the recommendation system.

To handle multimodal data, a typical and effective solu-
tion is to apply a separate GNN for each modality, and then
pool the representations from these GNNs (Wei et al. 2019).
At the feature level, it is obvious that input features of differ-
ent modalities need to be encoded differently, e.g., using an
image encoder for images. In this work, we show that the dif-
ferences between modalities lies not just in how the features
should be encoded, but also in how each modality’s informa-
tion should be propagated over the graph, i.e. the receptive
field used for each modality. This issue is overlooked in the
recent literature, which does not consider differences at the
receptive field level across GNNs for different modalities.

Define the receptive field of GNNs as its number of hops
(K): existing studies default to setting the same K for GNNs
across all modalities. However, we observe that the opti-
mal receptive field for GNNs differs across modalities. We
conduct experiments by applying GNNs with different K
to each modality’s features. When vertices lack features for
a modality (e.g., user vertices usually do not have text and
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Figure 2: Examples of GNNs and Transformers.

visual features), we assign them zero vectors. Besides text
and visual, the learnable embeddings are also treated as a
modality. We conduct the experiment with a state-of-the-art
(SOTA) model, MGDN (Hu et al. 2024) (which generalizes
the widely used LightGCN (He et al. 2020)). Results on the
Amazon Baby dataset (see Figure 1) show that the learnable
embedding and text modalities perform best at K = 3, while
the visual modality performs best at K = 2, highlighting the
benefit of choosing different K for different modalities.

Another key consideration is the usage of global informa-
tion. Our experiments (Experiments Section) indicate that
the optimal K for certain modalities on specific datasets can
be as low as 1 or 2, limiting GNNs’ ability to capture global
information from vertices across the whole graph. As shown
in Figure 2a, when limiting the receptive fields of GNNs
to 2 hops, the information of certain vertices, like v1, v2,
v3, and v4 is missing for the target vertex v0. Transform-
ers (Vaswani et al. 2017) can potentially capture global in-
formation in graphs. Figure 2b shows that applying a Trans-
former to all vertices enriches the target vertex v0 with in-
formation from all vertices. However, this is impractical, as
Transformers typically require computing attention scores
for every vertex pair, resulting in excessive time and space
complexity. To address this, we introduce a Sampling-based
Global Transformer, which utilizes uniform global sampling
to effectively integrate global information for GNNs.

In this paper, we propose a framework named Modality-
Independent Graph Neural Networks with Global Trans-
formers (MIG-GT) for Multimodal Recommendation. It
adopts modality-independent receptive fields to facilitate
GNNs on multimodal graphs. Besides, to exploit the global
information, we introduce a Sampling-based Global Trans-
former, which utilizes uniform global sampling to effec-
tively integrate global information for GNNs.

We summarize our key contributions below:
• We propose GNNs with Modality-Independent Recep-

tive Fields (MIRF), which apply separate GNNs with in-
dependent receptive fields (number of hops, K) on dif-
ferent modalities, to enhance performance. Our results
indicate that the optimal K for certain modalities on spe-
cific datasets can be as low as 1, which limits the GNN’s
ability to capture global information.

• To better capture global information, we introduce a
Sampling-based Global Transformer (SGT). This mod-
ule leverages uniform global sampling to effectively in-
corporate global context into the learning process.

• We conduct comprehensive experiments that demon-
strate the superiority of our method over baselines.

Related Work
Graph Neural Networks for Recommendation
Recent advances in GNNs have facilitated various social me-
dia research (Liu et al. 2023b; Zhu et al. 2023; Fang et al.
2023; Gao, Zhang, and Xu 2021; Han et al. 2021; Qian et al.
2023), with recommendation research being a representa-
tive case. GNN-based methods conceptualize user-item in-
teractions as bipartite graphs, using GNNs to learn embed-
dings that reflect user preferences. GCMC (van den Berg,
Kipf, and Welling 2017) employs Graph Convolutional Net-
works (GCNs) to build an autoencoder for recommenda-
tion. PinSage (Ying et al. 2018) uses GNNs with sampling
for large datasets. NGCF (Wang et al. 2019) designs GNNs
to enhance interactive signal capture between vertices and
neighborhoods. LightGCN (He et al. 2020) optimizes GNNs
by forgoing transformations and activation functions within
GCN layers, streamlining message passing for effective em-
bedding generation. UltraGCN (Mao et al. 2021) presents
a paradigm shift by eschewing explicit GNN operations in
favor of a constraint-based loss function. ApeGNN (Zhang
et al. 2023) adaptively aggregates information based on lo-
cal structures, capturing diverse patterns. MGDN (Hu et al.
2024) can generalize LightGCN and offer flexible controls
to balance self and neighbor information.

Graph Transformers
Transformers can capture global information but suffer from
quadratic complexity w.r.t. vertex count, making them in-
efficient for large graphs in recommendation tasks. Recent
works, such as SGFormer (Wu et al. 2023a) and Poly-
normer (Deng, Yue, and Zhang 2024), address this by re-
moving softmax normalization, reducing complexity to lin-
ear. Both methods combine Graph Transformer outputs with
GNN models, differing in their fusion strategies.

Multimodal Recommendation
Initial advancements (He and McAuley 2016b; Liu, Wu,
and Wang 2017) enhanced the Bayesian Personalized Rank-
ing (BPR) (Rendle et al. 2009) by combining learnable
embeddings and visual features. VECF(Chen et al. 2019)
uses VGG (Simonyan and Zisserman 2015) for image
pre-processing and region-specific attention for item vi-
sual features. The advent of GNNs has facilitated mul-
timodal user/item representation learning. MMGCN (Wei
et al. 2019) builds modality-aware graphs and applies sep-
arate GNNs to learn modality-specific features, which are
then aggregated. GRCN (Wei et al. 2020) progresses this
concept by refining user-item graph structures, sieving out
misleading connections. DualGNN (Wang et al. 2023) intro-
duces a user co-occurrence graph with a feature preference
module to capture multimodal item feature dynamics.

Previous methods typically use user-item interaction
graphs, capturing item relationships implicitly, while some
explicitly model item relationships. LATTICE (Zhang et al.
2021) performs modality-aware structure learning, obtain-
ing item-item structures separately for each modality and
then combining them. FREEDOM (Zhou and Shen 2023)



simplifies the process by freezing the item-item graph struc-
ture and denoising the user-item interaction graph.

Most existing approaches focus on denoising or explic-
itly modeling item-item relations. Different from them, this
paper addresses the task from the perspective of modality-
independent receptive fields and global information, show-
ing the necessity of these elements for multimodal recom-
mendation. Even without the denoising and explicit model-
ing of item-item relations, our model already outperforms or
matches the performance of SOTA models.

Preliminary
Problem Definition
Let U and V denote the sets of users and items, with sizes
|U | and |V |, respectively. We denote the i-th user as ui and
the j-th item as vj . Each item in V is associated with mul-
timodal data, including text and an image. A user-item in-
teraction matrix B ∈ R|U |×|V | represents observed interac-
tions, where Bij is set to 1 or 0 to denote whether the inter-
action between ui and vj has been observed. The task is to
predict unobserved user preferences over items. Our model
learns a d-dimensional vector (d ≪ |U |+ |V |) as the repre-
sentation for each user/item vertex and uses the dot product
between user and item representations to reflect preference
scores, with higher scores indicating higher preferences.

Multimodal User-Item Graph
In this paper, we adopt the method of modeling users and
items within a single homogeneous graph. Specifically, the
users and items are modeled as vertices of a user-item graph
G, consisting of |N | = |U |+ |V | vertices, where the first |U |
vertices represent users and the subsequent |V | vertices rep-
resent items. The observed user-item interactions are mod-
eled as edges in the graph, thus, the adjacency matrix of the
graph A ∈ {0, 1}|N |×|N | is defined as follows:

A =

(
0 B
B′ 0

)
(1)

where B′ denotes the transpose of B. For multimodal data,
each item vertex has a text feature vector and a visual feature
vector extracted via pre-trained models. Each user vertex is
assigned a d-dimensional learnable embedding.

Method
We present our framework, Modality-Independent Graph
Neural Networks with Global Transformers (MIG-GT).

Overall Framework
Figure 3 provides an overview of our framework. The upper-
left part shows the input graph with users and items as ver-
tices and user-item interactions as edges. Each item is asso-
ciated multimodal data, including text and an image. Note
that our method is applied directly to the original user-item
interaction graph without constructing new graphs.

Our proposed framework mainly consists of two com-
ponents: (1) Modality-Independent Receptive Fields
(MIRF) applies separate GNNs with independent receptive
fields for data of different modalities in the graph. For each

GNN, first an MLP is used to encode vertex features of the
corresponding modality into d-dimensional feature vectors,
which is a common operation in existing works. (Wei et al.
2019) Then we perform message propagation with the en-
coded features, and different from existing work, we pro-
pose to use modality-independent receptive fields for differ-
ent modalities. The independent receptive fields for different
modalities, learnable embedding, text, and visual, denoted
as K(E), K(T ), and K(V ) are selected based on validation
set performance. (2) Sampling-based Global Transformer
(SGT) is designed to exploit global information. SGT per-
forms self-attention using a few vertices uniformly sampled
from the entire graph to enrich vertex representations. Un-
like typical Transformers, which compute attention scores
for every pair of vertices—resulting in significant time and
space complexity—SGT only needs to compute the atten-
tion scores between each vertex and the few sampled ver-
tices, thereby enhancing efficiency. We also propose a Trans-
former Unsmooth Regularization (TUR) for optimization.

Modality-Independent Receptive Fields
We apply separate GNNs to features from different modal-
ities. Each GNN follows an encode-then-propagate frame-
work (Klicpera, Bojchevski, and Günnemann 2019), using
an MLP to encode vertex features into d-dimensional vec-
tors for message propagation on the graph. (d ≪ |N | is
the dimensionality of the final vertex representations.) For
message propagation, we utilize MGDN, which propagates
vertex features without feature transformations.

Specifically, we use X(M) ∈ R|N |×d(M)

to denote the raw
vertex feature matrix of modality M , where |N | is the num-
ber of vertices, and d(M) is the feature dimension specific to
modality M . X(E), X(T ), and X(V ) represent the learnable
embedding, text, and visual modalities, respectively. The en-
coded feature vectors by the MLP are denoted as:

X̃(M) = MLP(X(M)) ∈ R|N|×d (2)

One exception is the learnable embedding modality, where
X(E) ∈ R|N |×d can be directly optimized. Therefore, it
does not require an extra MLP, and X̃(E) = X(E). Note
that treating each modality independently may cause certain
vertices to have missing features. For example, when deal-
ing with either text or visual modalities, the user vertices
may lack features under certain modalities. In such cases, we
simply assign zero vectors as the encoded feature vectors for
these featureless vertices (in X̃(M)), with their dimensional-
ity matching that of other vertices’ features.

For message propagation, we use MGDN separately for
each modality with different receptive fields K(M) for each.
We first compute a normalized adjacency matrix for MGDN,
shared across all modalities, Â = D̃− 1

2 ÃD̃− 1
2 , where Ã =

A + I and D̃ii =
∑N

j=0 Ãij is the degree matrix of Ã.
With it, MGDN learns vertex representations by incorpo-
rating neighbor information within K(M) hops as follows:

Z(M) = fMGDN (X̃(M), A)

= (βKÂK(M)

+

K(M)−1∑
k=0

αβkÂk)X̃(M)/Γ
(3)
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Figure 3: Overall Framework of Modality-Independent Graph Neural Networks with Global Transformers (MIG-GT).

where Γ is used for normalization to ensure the sum of co-
efficients of ÂkX̃(M) in Equation 3 is 1.0:

Γ = βK(M)

+

K(M)−1∑
k=0

αβk (4)

For efficiency, Z(M) is computed in a step-wise manner:

H(M,0) = X̃(M) (5)

H(M,k) = βÂH(M,k−1) + αH(M,0) (6)

Z(M) = H(M,K(M))/Γ (7)
In each iteration, the updated vertex representations are
formed by incorporating both the propagation result,
ÂH(M,k−1), and the input embeddings, H(M,0) = X̃(M).
The relative importance of these components is modulated
by the hyperparameters β and α.

After obtaining modality-independent vertex representa-
tions Z(E), Z(T ), and Z(V ), we perform sum-pooling to ob-
tain the multimodal vertex representations Z ∈ R|N |×d:

Z = Z(E) + Z(T ) + Z(V ) (8)

We define zi to denote the i-th row in Z, representing the
multimodal representation of the i-th vertex.

For selecting modality-independent receptive fields K(M)

(K(E), K(T ), and K(V )), we show in the experiments sec-
tion that grid search on validation datasets is feasible, with
the impact of these hyperparameters on validation datasets
being almost consistent with that on test datasets.

Sampling-Based Global Transformer
Typical Transformers require computing the attention scores
between every pair of samples, thus making it impractical to
apply them directly to graphs. To alleviate this, for each ver-
tex zi, we uniformly sample C vertex representations from
Z, and apply Transformers only on the current vertex and
the sampled vertices. Note that, for each vertex, C vertices
are sampled independently at each training step. Therefore,
throughout the training, each vertex is likely to be sampled

along with many vertices uniformly sampled from the global
set, capturing more global information. This global informa-
tion will then be learned by the MLP encoder of the GNNs
and the learnable embeddings.

Formally, given zi, we construct a matrix Si ∈ R(C+1)×d,
where the first row si1 = zi represents the representation of
the i-th vertex. Each subsequent row sij (for 1 < j ≤ C+1)
is assigned a vertex representation zk from Z denoted as
sij = zk, and k ∼ Uniform(1, |N |).

We apply a simplified Transformer on Si to perform self-
attention to enrich the semantics of the vertex representa-
tions in Si, obtaining Ti ∈ R(C+1)×d:

Ti = (1− γ)softmax

(
QK⊤
√
d

)
V + γSi (9)

where softmax denotes the row-wise softmax normaliza-
tion, and 0 ≤ γ ≤ 1 is a hyperparameter that modifies
Transformer’s residual connection to offer more flexibility,
allowing for adjustable integration of the Transformer’s out-
put with the original input. Q = SiW

(Q), K = SiW
(K),

and V = Si, where W (Q) ∈ Rd×d(att)
and W (K) ∈ Rd×d(att)

are learnable parameters, and d(att) is a hyperparameter.
After self-attention, we extract the first row of Ti as the

final representation of the i-th vertex. We denote the final
vertex representation matrix as Z̃ ∈ R|N |×d, where z̃i repre-
sents the i-th vertex, thus z̃i = Ti1. Note that the remaining
rows {Tij |j > 1} are not taken as the final vertex repre-
sentations but are used for regularization, introduced later.
Besides, we use ũi = z̃i and ṽj = z̃j+|U | to denote the final
vertex representation of the i-th user and j-th item.

Transformer Unsmooth Regularization Our method
samples vertices globally and uses the Transformer to enrich
them by extracting complementary information from each
other. This process may cause an issue known as smooth-
ing, making it difficult to distinguish the representations of
certain vertices. Given the i-th vertex and the correspond-
ing output of the Transformer, Ti, it contains the enriched
representation of not only the i-th vertex but also C uni-
formly sampled vertices. Since they complement each other



via self-attention, their representations are likely to become
smooth and indistinguishable from one another. Our un-
smooth regularization aims to ensure our model can still dis-
tinguish between them. This regularization relies on edges in
graphs. Sampling one of the i-th vertex’s neighbors, denoted
as the k-th vertex (that is, Aik = 1), we take its final repre-
sentation z̃k and apply the regularization as follows:

LTUR = −
∑

Aik=1

log

(
exp(z̃′kTi1)∑C+1

j=1 exp(z̃′kTij)

)
(10)

Our experiments show that with a small number of ver-
tices sampled from the global graph (C ≤ 20), our model
can already achieve significant performance improvements.
Note that, unlike a typical Transformer, which requires com-
puting attention scores between each vertex and all ver-
tices in the graph—resulting in significant time and space
complexity—our method computes attention scores only be-
tween each vertex and the C sampled vertices, where C is
very small, thereby enhancing efficiency.

Model Optimization
We optimize a combined loss with Adam optimizer (Kingma
and Ba 2015), where the combined loss is as follows:

Lrec = Lrank(Z̃) + LTUR(Z̃, T ) + ΨL2LL2(Z̃) (11)

where Lrank(Z̃) is the ranking loss, and LL2(Z̃) is the L2
regularization with coefficient ΨL2. For the ranking loss, we
adopt the popular BPR loss (Rendle et al. 2009):

LBPR = −
∑

Bij=1

Evk∼p(v) log σ(ũ
′
iṽj − ũ′

iṽk) (12)

where σ denotes the sigmoid activation function, and vk ∼
p(v) represents a vertex randomly sampled from the graph.

Experiments
We conduct experiments on three public datasets using a
Linux system with two Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz processors, 128GB of RAM, and a GeForce
GTX 1080 Ti GPU (11GB). The model is implemented via
PyTorch 1 and DGL (Wang et al. 2020), with our code in-
cluded in the supplementary materials.

Datasets
Following prior work (Zhang et al. 2021; Zhou and Shen
2023), we conduct our studies on three public datasets
from the Amazon review datasets (He and McAuley 2016a),
specifically abbreviated as Baby, Sports, and Clothing, re-
spectively. These datasets provide multimodal data (textual
and visual) for the items and vary in item count per cate-
gory. We utilize the preprocessed data from previous studies,
where the raw data for each category was filtered using a 5-
core threshold for both products and users. Regarding multi-
modal features, we adopt the text and visual embeddings ex-
tracted and published by prior work (Zhou and Shen 2023),
with visual features as 4,096-dimensional embeddings ob-
tained from pre-trained Convolutional Neural Networks, and

1https://pytorch.org/

Dataset Users Items Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 278,677 99.97%

Table 1: Statistics of the three datasets.

text features as 384-dimensional embeddings from sentence-
transformers, derived from item titles, descriptions, cate-
gories, and brands. Dataset statistics are shown in Table 1.

Baselines
All baselines utilize BPR as the ranking loss. The first set of
baselines comprises models that rely solely on user-item in-
teractions and do not incorporate multimodal data: MF (Ko-
ren, Bell, and Volinsky 2009), LightGCN (He et al. 2020),
ApeGNN (Zhang et al. 2023), and MGDN (Hu et al. 2024).
The second set includes multimodal recommendation mod-
els that leverage both user-item interactions and multimodal
data: VBPR (He and McAuley 2016b), MMGCN (Wei et al.
2019), GRCN (Wei et al. 2020), DualGNN (Wang et al.
2023), SLMRec (Tao et al. 2023), LATTICE (Zhang et al.
2021), and FREEDOM (Zhou and Shen 2023).

Model Evaluation and Parameter Settings
To ensure a fair comparison, we adopt the evaluation set-
tings from previous studies (Tao et al. 2023; Wang et al.
2023; Zhang et al. 2021; Zhou and Shen 2023). Our evalua-
tion criteria include two widely-used metrics, abbreviated as
R for recall and N for Normalized Discounted Cumulative
Gain (NDCG). We report these metrics for top 10 and top
20 recommendations, denoted as R@10, R@20, N@10, and
N@20. Regarding data split, we allocated 80% of known
user interactions for training, 10% for validation, and the re-
maining 10% for testing. The reported performance is the
mean results obtained using five different random seeds.

In terms of hyperparameters, we tune each hyperparame-
ter within a range, and take the combination achieving best
performance in the validation set, reporting the correspond-
ing test performance. For the independent receptive fields,
we search number K(M) ≤ 4. For the γ in the transformer,
we search within 0.8 and 0.9. The learning rate and L2 regu-
larization coefficient are searched from {1×10−2, 1×10−3}
and {1× 10−4, 1× 10−5}, respectively.

Performance Analysis
We report the performance of baseline methods and our
method in Table 2. Some baseline results are directly cited
from the original literature, while others, which may slightly
differ, are derived from running the provided source code
without modifications. The column ‘Multimodal’ indicates
whether the method utilizes multimodal data, and the col-
umn ‘GNN’ denotes whether it is GNN-based. From the re-
ported performance, we make the following observations:
• The methods exploiting multimodal data generally

demonstrate an advantage over those that do not utilize
multimodal data. Notably, VBPR, which extends MF via
multimodal features, shows a significant improvement in
performance, underscoring the importance of leveraging
multimodal data in recommendation systems.



Baby Sports Clothing
Method Multimodal GNN R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
MF ✗ ✗ 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0206 0.0303 0.0114 0.0138
LightGCN ✗ ✓ 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0361 0.0544 0.0197 0.0243
ApeGNN ✗ ✓ 0.0501 0.0775 0.0267 0.0338 0.0608 0.0892 0.0333 0.0407 0.0378 0.0538 0.0204 0.0244
MGDN ✗ ✓ 0.0495 0.0783 0.0272 0.0346 0.0614 0.0932 0.0340 0.0422 0.0362 0.0551 0.0199 0.0247
VBPR ✓ ✗ 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192
MMGCN ✓ ✓ 0.0421 0.0660 0.0220 0.0282 0.0401 0.0636 0.0209 0.0270 0.0227 0.0361 0.0154 0.0154
GRCN ✓ ✓ 0.0532 0.0824 0.0282 0.0358 0.0599 0.0919 0.0330 0.0413 0.0421 0.0657 0.0224 0.0284
DualGNN ✓ ✓ 0.0513 0.0803 0.0278 0.0352 0.0588 0.0899 0.0324 0.0404 0.0452 0.0675 0.0242 0.0298
SLMRec ✓ ✓ 0.0521 0.0772 0.0289 0.0354 0.0663 0.0990 0.0365 0.0450 0.0442 0.0659 0.0241 0.0296
LATTICE ✓ ✓ 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330
FREEDOM ✓ ✓ 0.0627 0.0992 0.0330 0.0424 0.0717 0.1089 0.0385 0.0481 0.0626 0.0932 0.0338 0.0416
MIG-GT ✓ ✓ 0.0665 0.1021 0.0361 0.0452 0.0753 0.1130 0.0414 0.0511 0.0636 0.0934 0.0347 0.0422
Improv. 6.06% 2.92% 9.39% 6.6% 5.02% 3.76% 7.53% 6.24% 1.6% 0.21% 2.66% 1.44%

Table 2: Performance comparison of different recommendation models.

• GNN-based methods consistently outperform non-GNN
methods (MF and VBPR), with or without multimodal
data, highlighting the efficacy of GNNs in this domain.

• MMGCN is an early and typical study on applying GNNs
for multimodal recommendation, proposing to apply dif-
ferent GNNs to different modalities separately. Com-
pared to MMGCN, GRCN, DualGNN, and SLMRec
consider more nuanced properties, like noisy user-item
interactions, resulting in better performance. This shows
that there is room to improve GNNs based on the specific
properties in multimodal recommendation systems.

• Besides explicit user-item interactions, LATTICE and
FREEDOM learn implicit item-item relationships and
build graphs to explicitly utilize them. FREEDOM also
introduces a denoising mechanism for the learned item-
item relations. Both models outperform most other base-
lines, demonstrating that explicitly modeling item-item
relationships is an effective alternative approach.

• MIG-GT outperforms the SOTA baseline (FREEDOM)
with an improvement of around 5% on two datasets
(Baby and Sports) and slightly outperforms FREEDOM
on Clothing. Note that, unlike other GNN baselines,
MIG-GT does not rely on commonly used components
like denoising and explicit modeling of item-item rela-
tions. It relies solely on our modality-independent recep-
tive fields and a sampling-based Global Transformer, yet
it still outperforms or matches the performance of base-
lines, showing the effectiveness of our method.

Detailed Analysis
Impact and Selection of Modality-Independent Recep-
tive Fields Firstly, we examine the impact of modality-
independent receptive fields, denoted as K(M), which in-
clude K(E), K(T ), and K(V ). Given the extensive number
of possible combinations, we present a subset of these on
the Amazon Baby dataset for brevity. In each figure, we fix
K(M) of one modality to the optimal value and vary the oth-
ers from 1 to 4, resulting in 16 combinations. We report both
validation and test performance for each combination.

To clearly visualize the impact of MIRFs, we use several
heatmaps in Figure 4 and Figure 5, with the x-axis and y-axis
representing the numbers of two modality receptive fields,
respectively. Each cell in the heatmap displays the per-
formance (ndcg@20), highlighting performance variations
across different combinations. In Figure 4, we fix K(E) = 4
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(b) Performance on Test Set.
Figure 4: Heatmaps showing the NDCG@20 scores for dif-
ferent combinations of K(T ) and K(V ).
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(b) Performance on Test Set.
Figure 5: Heatmaps showing the NDCG@20 scores for dif-
ferent combinations of K(E) and K(V ).

and vary K(T ) and K(V ). Another set of heatmaps in Fig-
ure 5 maintains K(T ) = 2 while varying K(E) and K(V ).
The results indicate that different combinations yield dif-
ferent performances, with the optimal MIRF configuration
(which diverges from the identity receptive field setting
across all modalities) achieving the best performance.

Selection of MIRFs. Furthermore, we demonstrate the
feasibility of using grid search on the validation dataset
for selecting MIRFs. Figure 4a and Figure 5a depict the
heatmaps generated from the validation dataset, while Fig-
ure 4b and Figure 5b correspond to the test dataset. Compar-
ing the two sets of heatmaps allows us to assess the consis-
tency of the hyperparameters’ impact between the validation
and test datasets. Our findings confirm that the patterns ob-
served during validation are generally representative of the
test phase, validating grid search as a viable method for se-
lecting independent receptive fields for different modalities.

Impact of Sampling-Based Global Transformers We
perform ablation tests with a variant of our model, MIG,
which removes SGT and retains only the MIRF components.
We compare our model against the variant in Figure 6, in-



Baby Sports Clothing
Dataset

0.060

0.065

0.070

0.075
re

ca
ll@

10
Method

FREEDOM
MIG
MIG-GT

(a) recall@10

Baby Sports Clothing
Dataset

0.09

0.10

0.11

re
ca

ll@
20

(b) recall@20

Baby Sports Clothing
Dataset

0.030

0.035

0.040

nd
cg

@
10

(c) ndcg@10

Baby Sports Clothing
Dataset

0.040

0.045

0.050

nd
cg

@
20

(d) ndcg@20

Figure 6: Impact of Sampling-based Global Transformers.

Baby Sports Clothing
Method R@20 N@20 R@20 N@20 R@20 N@20
MIG-SGFormer 0.0863 0.0376 0.0887 0.0392 0.0827 0.0363
MIG-Polynormer 0.0997 0.0436 0.1048 0.0461 0.0864 0.0386
MIG-GT 0.1021 0.0452 0.1130 0.0511 0.0934 0.0422

Table 3: Impact of Different Global Transformers.
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Figure 7: Impact of Number of Global Samples (C) for SGT.

cluding the performance of the SOTA method FREEDOM
for better comparison, to show the effectiveness of SGT. The
results show that MIG, even without SGT, already outper-
forms FREEDOM on Baby and Sports. With SGT, MIG-
GT further enhances MIG’s performance. On Clothing, al-
though MIG is slightly outperformed by FREEDOM, with
SGT, MIG-GT enhances it to achieve better performance
than FREEDOM, showing the effectiveness of SGT.

Additionally, we replace SGT with existing Graph Trans-
former methods, SGFormer and Polynormer, to construct
variants MIG-SGFormer and MIG-Polynormer, and com-
pare them with MIG-GT in Table 3. The results show that
MIG-GT outperforms these variants, demonstrating the ef-
fectiveness of our sampling-based approach for developing
Global Transformers in recommendation contexts.

Impact of Number of Global Samples for SGT To in-
vestigate the impact of the number of global samples C for
SGT, we vary it from 5 to 25 and report the corresponding
performance. Results in Figure 7 show that when increasing
from 5 to 10, we observe a performance improvement across
datasets. Further increasing it beyond 10, performance in-
crements can be observed on certain datasets. Overall, this
demonstrates that with only 10 or 20 global samples, our
SGT can significantly improve performance.

Training Efficiency of MIG-GT To demonstrate the
training efficiency of our method, we visualize test perfor-
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Figure 8: Test performance (ndcg@20) during training.
Baby Sports Clothing

Method R@20 N@20 R@20 N@20 R@20 N@20
MMSSL 0.0971 0.0420 0.1013 0.0474 0.0797 0.0359
MGCN 0.0964 0.0427 0.1106 0.0496 0.0945 0.0428
LGMRec 0.1002 0.0440 0.1068 0.0480 0.0828 0.0371
MIG-GT 0.1021 0.0452 0.1130 0.0511 0.0934 0.0422
MIG-GT-CL 0.1022 0.0451 0.1120 0.0505 0.0946 0.0428

Table 4: Comparison with CL-Based Methods.

mance (ndcg@20) against training time in seconds during
training in Figure 8. The choice to report training time in-
stead of epochs is deliberate. In recommendation tasks, the
definition of an ‘epoch’ can vary, being defined as a full it-
eration over either users (vertices) or user-item interactions
(edges). Thus, training time serves as a more consistent and
comparable measure of efficiency across different methods.

When compared with FREEDOM – known for its effi-
ciency – our method consistently achieves higher perfor-
mance more rapidly across all tested graphs by avoiding a
complex denoising mechanism over item-item relations. On
Baby and Sports, our method surpasses FREEDOM’s final
performance at early stages. On Clothing, while our final
performance matches FREEDOM’s, our method converges
faster and reaches the optimal results earlier.

Comparison with Contrastive Learning (CL)-Based
Methods Another research direction focuses on improv-
ing GNNs via CL. We build MIG-GT-CL, integrating our
model with the typical CL loss, InfoNCE (van den Oord, Li,
and Vinyals 2019), and compare it against CL-based meth-
ods, MMSSL (Wei et al. 2023), MGCN (Yu et al. 2023), and
LGMRec (Guo et al. 2024). Results in Table 4 show that
MIG-GT already surpasses most baselines and outperforms
all with the simple addition of the CL loss (MIG-GT-CL).

Conclusions
In this study, we explored GNNs for multimodal recommen-
dation systems. We observe that optimal receptive fields for
GNNs can vary across different modalities. To capitalize on
this, we introduced GNNs with Modality-Independent Re-
ceptive Fields, employing separate GNNs for each modality
with independent receptive fields to enhance performance.
To address the challenge where the optimal receptive field
size, which can be quite low, restricts GNNs’ ability to
capture global information, we proposed a Sampling-based
Global Transformer (SGT). It utilizes uniform global sam-
pling to more efficiently integrate global information within
GNN frameworks. Experiments show that the SGT improves
performance even with a small number of sampled vertices,
confirming sampling as an effective method for applying
Global Transformers in multimodal recommendations.
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